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SUMMARY 

A block relaxation scheme, grouped in a red-black ordering, is applied to transonic aerofoil calculations 
using body-fitted co-ordinates. The scheme is simple and easily vectorizable. Detailed comparisons with the 
approximate factorization method (AF2) are presented and it is shown that the new scheme is competitive in all 
cases considered. Transonic results, of engineering accuracy, on an 0-type grid of 149 x 30 points, are usually 
obtained within 200 iterations ( = 40 s on a Cyber 175). 
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INTRODUCTION 

Until recently, most transonic codes' were based on the successive over-relaxation method. 
Although generally slow, it is simple and reliable. The rate of convergence depends on a single 
parameter which can be found by numerical experiments. Attempts to accelerate the convergence 
by e ~ t r a p o l a t i o n ~ . ~  (power method) succeed only when the iterative matrix has dominant 
eigenvalues. 

Fast direct solvers495 were once proposed for transonic problems. A uniform grid in one direction 
is required and three-dimensional calculation is not as efficient. Later, ADI-type methods6.' were 
used successively, where a parameter is cyclically varied to reduce different frequency components 
of the error. A similar method, where the difference equations are approximately factored, is the 
strongly implicit procedure (SIP).s More operations of a recursive nature and more storage are 
needed in the LU decomposition and no proof of convergence exists even for idealized problems. 
Unlike AD1 and SIP, the preconditioned conjugate gradient method (PCG)9 does not require an 
estimation of any iteration parameters. Theoretically it is applicable, but only for symmetric 
positive definite systems. Finally, a breakthrough came with multigrid.'O,' ' Because of program- 
ming complexity, it is not easy to implement and to achieve the theoretical rate of convergence. 

It should be mentioned, however, that most of these methods are not easily vectorizable. On a 
vector machine, or if external array processors are used, the rate of computation becomes as 
important as the rate of convergence in determining the efficiency of the method. 

In this paper, simple vectorizable relaxation methods are re-examined. Modifications to 
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accelerate the rate of convergence are studied using a model problem. Results for practical 
problems are compared with those obtained by other methods. 

POTENTIAL EQUATION 

The governing differential equation of transonic potential flows, in Cartesian co-ordinates, is given 
by the mass conservation law: 

where 

Here, the density p and the velocity components 4x and 4y are non-dimensionalized by the 
stagnation density ps and the critical sound speed a* respectively. 

Following Holst,' equation (1) is transformed from Cartesian co-ordinates into the comput- 
ational domain. The full potential equation written in terms of the transformed co-ordinates, 5 (x, y )  
and v(x,Y), is 

U and V are the contravariant velocity components along the 5 and r directions respectively, 
A , ,  A, and A ,  are metric quantities and f is the Jacobian of the transformation. Usually the grid is 
stretched in the lateral direction, but the aspect ratio in the physical domain is almost uniform. For 
most practical problems, a 149 x 28 grid is sufficient to obtain engineering accuracy solution. Holst 
introduced an implicit approximate factorization algorithm (AF2) (using artificial densities in 
supersonic regions) to solve equation (2). A fast, reliable code (TAIR) is well documented in 
Reference 12. 

In this work, TAIR is modified by replacing the iterative algorithm with an over-relaxation 
scheme. The grid generation and residual calculations, including the boundary conditions and 
circulation updating, are not changed. The spatial finite difference approximations are given by 

where xc and 3, are the usual backward difference operators and the quantities ( U / J ) , +  1/2,j and 
(V/J)i,j + are computed using standard second-order-accurate finite difference formulae. The 
densities p i + l i 2 , j  and p i , j + l i 2  are defined by 

f i i + l / 2 , j =  [(l - v ) P l i + 1 / 2 , j +  v i + 1 / 2 , j P i + k + 1 / 2 , j ,  

P i , j +  1 / 2  = C(1 - v ) ~ l i , j +  1 / 2  + Vi,j+ 1 / 2  ~ i , j + r + 1 / 2 ,  
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where 

k = k 1 when Ui+ 1,2,j 2 0, (4) 

1 = k 1 when Vi , j+  1/2 2 0, 

vi+1/29j= i max[(Mi2,t,j- l)CON,O] for Ui+1j2,j<0, 

and 

(5 )  
max [(MiZ,j - 1) CON, 01 for Ui+ 1/2,j > 0, 

where Mi,j  is the local Mach number and CON is a user-specified constant. 

using reflection. To facilitate the circulation calculation, the velocity potential is written as 
The aerofoil boundary condition is simply V = 0. This is implemented at the aerofoil surface 

= 4 + r c / c m a x ,  (6) 
where r is the jump of the potential 4 at the trailing edge. Hence (I)< = 4t + r and (D,, are, of course, 
not affected. At the outer boundary, 4 is held fixed at the initial free stream value. 

SUCCESSIVE OVER-RELAXATION 

For subsonic flows, equation (1) is of elliptic type. Undeniably, successive over-relaxation (SOR) is 
the simplest iterative method to solve elliptic  equation^.'^-'^ For transonic flows, equation (1) is of 
mixed elliptic-hyberbolic type and again SOR is very suitable (the artificial time-dependent 
equation describing the development of iterations of line SOR, marching with the flow, is 
consistent with the unsteady transonic equation'). 

For an 0-type grid such as the one used in TAIR, there are two possibilities: solving for the 
unknowns on a radial line or for the unknowns on a ring around the aerofoil. Most of the existing 
relaxation codes use radial lines, marching with the flow direction (hence a $st term is implicitly 
introduced). On the other hand, using rings preserves the circulation and its effect will be felt 
instantaneously around the aerofoil; the price, however, is the extra work needed for the periodic 
tridiagonal solver which is a small penalty indeed. Normally, the grid is stretched in the lateral 
direction and thus marching the rings out is preferable to marching in. In either case, a 4,,t term is 
implicitly introduced. For transonic flows, a drt term is needed and can be added explicitly; the dVt 
term, however, may lead to deterioration of convergence or even divergence. A simple remedy is to 
use red and black ordering of the rings. The asymptotic rate of convergence is the same as SOR on a 
uniform mesh, marching in or out, and for a stretched grid it lies in between. Such a scheme is called 
'Zebra'. It is easily vectorizable; all the black rings can be solved at the same time, followed by the 
red ones. 

The Zebra scheme was first tested on Cartesian co-ordinates for 2D problems" and on 
cylindrical co-ordinates for 3D calculations." Doria and SouthIg used it with a nearly ortho- 
gonal mesh generated by a sequence of Schwarz-Christoffel and shearing transformations. It was 
also used successfully with stream function calculations.20 

In the following, some variants of the Zebra scheme are discussed and compared with standard 
relaxation methods. The SOR schemes are given by 

Marching in (increasing j )  

Bi - 1 Ci- 1 ,j - [(Bi- 1 + Bi) + (Bj- 1 + Bj)] Ci,j + BiCi+ 1 , j  = - L(I):,j - Bj- 1 Ci,j- 1 ,  (7) 

Marching out (decreasing j )  

B i _  1 ci- 1 - [(I?- 1 + Bi) + (Bj -  1 + Bj)] ci,j + BiCi+ 1 , j  = - L q j  - BjCi,j+ 1, (8) 
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with 

while the Zebra scheme is describe by 

~ i - i ~ i - I , j -  [ (B i -1+  Bi) + (B j -1+  Bj)lCi, j  + BiCi+ 1 , j  

= - L@?,j - BjCi,j+ 1 - Bj- 1 Ci,j- 1 ;  

@ e l  = +? . + w c i , j .  

(9) 
and in all cases 

b J  131 

It was found that it is faster to over-relax the terms corresponding to lateral derivatives only, 
namely 

Marching in 

B i - i C i - i , j -  C(Bi-1 + Bi) + (Bj-1 + B j ) / ~ l C i , j  + BiCi+l , j=  -L@;, j -Bj -1Ci , j - l>  (7') 
Marching out 

Bi- C; - 1 , j  - [(Bi - 1 + Bi) + (Bj- 1 + B j ) / o ]  Ci,j + Bi Ci + l , j  = - L@:,j - BjCi,j+ 1, (8') 
Zebra scheme 

B i - l C i - l , j -  C(Bi-1 + B i ) + ( B j - i  +Bj) / 'u]Ci , j+BiCi+i , j  

0 

Figure 1. Convergence of SOR and Zebra schemes 
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Figure 2. Convergence of Zebra schemes, relaxing certain terms only versus relaxing all terms 

and in all cases 

f#ly,;1 = f#ly,j + ci,j. 
At a field point, the damping term & has a coefficient proportional to ( 2 / 0  - 1). At the ring on the 
aerofoil surface, equation (8’) has to be slightly modified to avoid excessive damping there. In 
Figure 1, the convergence histories of SOR (7’) and (8’) and of Zebra (9’) are plotted for a subsonic 
flow ( M ,  = 0 7 )  around a NACA 0012 aerofoil. In Figure 2, the convergence of Zebra schemes 
based on equation (9) and equation (9’) for two grids, 149 x 30 and 149 x 15, are compared. 

For transonic flows, a f#lgt term is added and it is implemented as follows: On the upper surface of 
the aerofoii, Bi-  is replaced by 

while on the lower surface, Bi becomes - 
Bi = Bi(1 - p), (10) 

where p is a parameter to control the coefficient of the 4brt term. Notice that the diagonal element is 
always augmented by this modification. 

The number of supersonic points, the shock position, as well as the circulation approach their 
steady values in a relatively faster way than in radial SOR schemes. 
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CONVERGENCE ACCELERATION: A MODEL PROBLEM 

The Zebra scheme is implicit in the 5 direction but explicit in the r]  direction. For most practical 
problems the number of rings in the r]  direction is relatively small and the performance of Zebra is 
satisfactory. To study the characteristics of the scheme, a model problem, Poisson's equation on a 
square of uniform mesh, is considered. The spectral radius of a general class of iterative methods is 
given by 

p = 1 - ah', (1  1) 

where h is the mesh size. For example, Jacobi and Gauss-Seidel methods have (T = 2. Successive 
over-relaxation, using the optimum relaxation parameter, has (T = 1. Preconditioning techniques 
lead to (T < 1 ,  while multi grid convergence is independent of h(o = 0). 

In general, SOR cannot compete with the more powerful methods (smaller (T), since a finer grid 
can always be chosen, where the convergence of SOR is painfully slow. But if the grid is fixed, based 
on the accuracy requirement, the competition will depend on the parameter a. 

It is well known that block SOR is faster than point SOR. For example, line SOR is J 2  faster 
than point SOR. It will be shown that multi-line SOR is J m  faster, where m is the number of lines in 
each block. 

Consider a line Jacobi method. The iterative algorithm is given by 

2c 
h2 c,,--= - L 4 " +  f ,  

( 4 ~ ? : , ~  - 4 4 ? t 1  1.J + &!::,j) + = h 2 f i , j -  4 y , j - 1 ,  (13) 

by,;' +(+y?:,j+i -44;,;21+ $ ; z l ' , j + l ) = h 2 f i , j + l  - 4 Y , j + 2 .  (13') 

The system of equations (13), (13') is solved simultaneously for the unknowns on the two lines in 
terms of the previous values of 4 at the surrounding lines. The solution can be written in the form 

Either equation (14) or (14') is identical to that obtained by a line Gauss-Seidel iteration, which is 
known to be twice as fast as line Jacobi iteration. 

The three-line Jacobi iteration is given by 
(4;?i,j-1-4$;,;21 + $ y : i , j - 1 ) + $ i , j  n + l -  - h  2 f i , j - 1 - $ y , j - 2 ?  

+ ((fq::,j - 44:,; + 4;:/,j) + 4:,;j1 = h2f i , j ,  

4:,;'+(4:?:,j+1-44y,j=', + 4 ; : : , j + l ) = h 2 f . .  l , J + 1  - @ ? .  C,J+2' 

The unknowns on the three lines are solved simultaneously. To see the behaviour of 
convergence, the three equations are added and written in terms of the correction: 

(15) 
the 

where - 
ci,j=*(ci.j-l + c,,j+ Ci , j+ l ) .  
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Using Garabedian analysis,21 equations (16), (14) and (14) are approximations of artificial time- 
dependent equations describing the different processes. Hence the three-line Jacobi iteration is $ 
faster than the two-line method. In general, the m-line Jacobi iteration is m times faster than the 
one-line method. Algebraic proofs are available in the l i t e r a t ~ r e . ~ ~ , ~ ~  

For the model problem, the spectural radius of the multi-line Jacobi method is 

(17) 

(18) 

p , - I - m a h .  2 

Hence the Gauss-Seidel spectral radius is 
2 pGS = p3 21 1 - 2mah . 

The optimum over-relaxation parameter can be calculated in terms of pJ as 

2 
(19) 

and the spectral radius of SOR using coopt is 

(20) - 
PSOR,w,,t - @opt - - Jmah. 

Finally, the Zebra scheme has the same asymptotic rate of convergence as SOR. 
In the following, solution procedures for multi-line Zebra schemes are described. 

SOLUTION PROCEDURES OF MULTI-LINE SCHEMES 

In general, a block relaxation scheme is efficient provided that the extra work involved in the 
algebraic manipulations of the blocks is not large. In line relaxation methods, a tridiagonal solver 
can be used and the computational effort per point is almost the same for line as for point 
relaxation. Periodic tridiagonal solvers require almost twice as much ~ o r k . ~ ~ , ~ ~  For two-line 
schemes, a pentadiagonal solvers is needed. This is clear from Figure 3, where the unknowns of the 
two lines are ordered in a zigzag manner, since a point is directly related, at most, to s + 2 points. 
An algorithm for a pentadiagonal system of equationsz6 is given in Appendix I. VargaZ7 suggested 

-- * - -t- 
,.c - I 

I \ - 
I M P L I C I T  DIRECTION 

Figure 3. Zebra scheme with blocks of two lines 
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a normalized LU decomposition (with unit diagonal entries). The operations per mesh point are 
about 20% more than the corresponding tridiagonal procedure. For periodic pentadiagonal 
systems, the work is three times as much, as shown in Appendix 11. Therefore, unless the 
pentadiagonal solver is optimized, the improvement in the rate of convergence of the two-line 
schemes will be offset by the extra algebra involved in the solvers. 

Since the solvers are used iteratively, an approximation of the two-line equations may be useful, 
as long as it does not affect the rate of convergence. This idea is implemented as follows: the 
coefficients Bj for line j and line j + 1 are averaged; hence the Zebra two-line scheme becomes 

B .  
Bi- C i -  l , j  - [(& + & )  + (Bj  + B j ) / w ]  Ci , j  + ii Ci+  , j  + C .  l.J+ . 1 

(21) - - - L$y,j - BjCi,j- l ,  

,. B .  
gi- 1 Ci- l , j +  1 - [ ( i i  - 1 + gi) + (Bj + Bj)/wl  Ci,j+ 1 + BiCi+ l , j+ 1 + dci,j 

i i = i [ ( J )  FA1 +(I) P A ,  1' 
i +  l / Z , j  i f  1 / 2 , j +  1 

(For simplicity, in all our calculations, the density is scaled out of the equations for the corrections.) 

Bi- 1 ci- 1 - [ (gi- + & )  + Bj/w] ei + &ei+ = - L$i - t ( B j C i , j -  + BjCi, j+ 2 ) ,  (22) 

B i P 1 C i - ,  - [ ( & l  + & ) + ( B j + 2 B j ) / w ] 6 i + i i d i + l  

Adding and subtracting equations (21) and (21'), we have 
A A  

A "  

A "  

ci,j+l = ci - ci. (23') 
We found that, at least for subsonic flows, the rate of convergence of the Zebra scheme based on 
equations (22) and (22') is almost the same as that obtained by the pentadiagonal solver, where no 
approximations of the coefficients were made. Notice that only tridiagonal solvers are used in 
equations (22) and (22'). 

Using Garabedian analysis, the coefficients of the damping term $t for both equations (22) and 
(22') are proportional to (2/w - 1). 

A triple-line Zebra scheme 

Black and white blocks of three lines are also considered. To solve for the unknowns on three 
lines simultaneously, a seven-diagonal solver is needed. Instead, the following approximate 
equations are used: 

TCi, j - ,  + (A/w)Ci,j = - Ldi,j- 1 - ACi,j-2, (24 a) 

(24 b) (A/w)Ci,j- 1 + TCi,j + (A/w)Ci,j+ 1 = - L$i,j, 
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(A/’w)Ci,j+ TCi , j+ l=  - W i , j + ~  - A C i , j + 2 ,  

where 
A = +(Bj- + B j )  , T = - 2A/w + zcBiJc .  

Equations (24a), (24b) and (24c) are solved as follows: 

T C ~ =  - + ( ~ $ i , j - l  +ACi . j -Z -L4 i , j+ l  -ACi , j+2) ,  

[ ~ ~ - 2 ( ~ / o ) ~ ] e i = + ~ ( ~ 4 i , j - l +  ~ci.j-2 + ~ 4 i , j + l +  ~ci , j+2) + (A/w)L4i,j, 

c. .= [- i ( ~ 4 i . j - I  + ~ciJ-2 + L$i,j+l+ ACi, j+Z)-  ~ e i l / ( ~ / ~ ) ,  

t i=+(ci , j - l  - q j + 1 ) ,  ei=+(ci,j-l + Ci , j+ l ) .  

b J  
where 

Notice that 

Table I. CPU time(onCyber 175) for 100 
iterations of different schemes 

10- 

10- 

Rmax 

10- 

10- 
0 100 200 300 d 

ITERATIONS 

~~ 

Method CPU time (s) 

Zebra 3 lines 18 
Zebra 2 lines 20 
TAIR (AF2) 20 
Zebra 2 lines (penta) 26 

Figure 4. Convergence of one-line, two-line, and three-line Zebra schemes (w = 1) 
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T2-2(A/o)' =(T-J2A/o)(T+J2A/o);  

hence a tridiagonal solver is called three times. Because of the approximations, the CPU time is 
slightly less than used by the one-line Zebra scheme (see Table I). Again using Garabedian analysis, 
the coefficients of the 4t term for equations (24a), (24b) and (24c) are all proportional to (2/o - 1). 

In Figure 4, convergence rates of a line Zebra, a two-line Zebra and a three-line Zebra, using 
o = 1 (Gauss-Seidel) in all cases, are shown. The rate of convergence of the line Zebra is N 0.992. 
According to equation (18), the two-line Zebra rate should be 0.984 and the three-line scheme rate 
should be 0.976. The fourth curve in this figure represents the rate of convergence for a 149 x 15 
grid using a line Zebra scheme. The expected rate of convergence is 0.968. The numerical results 
confirm these predictions. It seems that the approximations do not affect the convergence for 
subsonic cases. The present method can be viewed as a local inversion (similar, for example, to odd 
and even reduction). However, the approximations based on the assumption of uniform 
coefficients will eventually affect the convergence rate if more and more lines are grouped 
together. In particular, for transonic flows with shocks, such approximations will have adverse 
effects, but multi-line schemes can be used at least in the subsonic far field. 

NUMERICAL RESULTS 

Subsonic and transonic flows around a NACA 0012 aerofoil at different Mach numbers and angles 
of attack are calculated. Results are presented in Figure 5. Similar results for a Korn aerofoil are 
shown in Figure 6. Except for Jameson's work,'' it seems that existing applications of multigrid 
(Reference 29-31) are not much more efficient than the present method. Zebra is also competetive 

10-3 

Rrnax 

10-6 

lo-* 
50 100 150 200 

ITERATIONS 

Figure 5(a). Convergence of Zebra schemes compared with TAIR results for a NACA 0012 aerofoil 



lo-* 

Rmax 

10-6 

10'~ 

10-8 

NACA 0012 

ZEBRA (TWO L I N E S )  

ZEBRA (THREE LINES) 

50 100 150 2w 
ITERATIONS 

Figure 5(b). Convergence of Zebra schemes compared with TAIR results for a NACA 0012 aerofoil 

0 

Figure 5(c). Convergence of Zebra schemes compared with TAIR results for a NACA 0012 aerofoil 
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Figure 5(d). Convergence of Zebra schemes compared with TAIR results for a NACA 0012 aerofoil 

ITERATIONS 
Figure 6(a). Convergence of Zebra schemes TAIR compared with results for a Korn aerofoil 
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Figure 6(b). Convergence of Zebra schemes compared with TAIR results for a Korn aerofoil 

Table 11. Dependence of Zebra two-line scheme on relax- 
ation parameter for NACA 0012 (R,,, = 

M, = 0.5, LY = 2" M ,  = 0.63, LY = 2" M ,  = 0.7, LY = 0" 

W N W N W N 
1.82 62 1.82 86 1.82 94 
1.84 60 1.84 76 1.84 84 
1.86 64 1-86 70 1.86 82 
148 70 1.88 76 1.88 82 

M ,  = 0.8, GI = 0" M ,  = 0.85, CI = 0" M ,  = 0.75, LY = 2" 

W N W N W N 
1.87 148 - 

1.88 120 - 
1.89 128 - 

1.90 132 1.90 288 - - 
1.92 148 1.92 260 1.92 348 
- - 1.94 232 1.94 324 

1.95 314 
- - - - 1.96 296 

- - 1.97 320 

- - - 

- - - 

- - - 

- - - - 

- - 

with the minimal residual method.28 Conjugate gradient-Zebra combined iterations have been 
proved to be u s e f ~ l . ~  

The dependence of the Zebra two-line scheme on the relaxation parameter is shown in Table 11, 
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where N is the number of iterations required to reach R,,, = The results shown are for 
NACA 0012. TAIR is less sensitive to the acceleration parameter, which is cyclically varied 
between al and C I ~ .  The rate of convergence is not really very sensitive to small variations (20%) of 
these parameters. All reported results are obtained, therefore, using default values, with no attempt 
at optimization. It is obvious that the performance of TAIR is very satisfactory. There are, however, 
some questions about the approximate factorization involved, and it is not clear how the error 
terms affect the convergence of transonic calculations. Another point of concern is the treatment 
of the boundary conditions for the intermediate variable used with the approximate factorization 
process, which is handled in the code in a rather empirical way. 

CONCLUDING REMARKS 

Within the limitations of the relaxation methods, a modest improvement can be achieved using 
blocks of two lines. The two-line scheme can be implemented with almost the same computational 
rate as the one-line scheme. For an 0-type grid around an aerofoil, the unknowns of two rings are 
solved simultaneously. It is found that black and red ordering of the blocks is suitable for transonic 
calculations and leads to easily vectorizable codes. Blocks of three lines are also considered. 

To obtain transonic results of engineering accuracy, the present simple method is competitive 
with existing techniques in terms of efficiency. Extension to three-dimensional calculation is 
straightforward. 
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APPENDIX I. SOLUTION O F  A PENTADIAGONAL SYSTEM OF EQUATIONS 

Consider 

' k 4 k - 2  + bk4bk-  1 + C k 4 k  + d k d k +  1 + e k 4 k + 2  = f k ,  k = 1 , 2 ~ - - .  > N - 1, (25) 

a, = bl = U 2  = eN - = eN - = d N  - = 0. 

The solution of (25) can be written in the form 

The coefficients ak,Pk and y k  are then computed according to the formulae 
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APPENDIX 11. SOLUTION OF A PERIODIC PENTADIAGONAL 
SYSTEM OF EQUATIONS 

Consider 
A @ = F ,  

c1 dl el a1 bl  
b2 c 2  d 2  e 2  a2 

ak bk ck dk ek 

e N - 2  a N - 2 b N - 2 C N - 2 d N  - 2 

d ~ - i k N -  1 UN - i b N -  ICN - 1 

- - 

fl 
f 2  

f k  

f N - 2  

f N -  1 - 

15 

If we let A be the pentadiagonal matrix obtained by deleting the last two rows and two columns 
of A, and define 

i , H =  

then the system (28) can be rewritten as 

or 

where Sl, S2 and &3 are obtained by solving the following non-periodic pentadiagonal systems: 

A&l = F, A& = G, A 5 3  = H. (32) 

It remains to solve the two scalar equations for the unknowns 4 N - 2  and 4N-l, namely 

e N - 2 4 1  + a N - 2 4 N - 4 + b N - 2 4 N - 3 + C N - 2 4 N - 2  + d N - 2 4 N - l  = f N - 2 ,  

d N - 1 4 1  + e N - 1 4 2 + u N - 1 4 N - 3 + b N - l $ N - 2  + C N - l $ N - l  = f N - I *  (33) 

Substituting (32) in (33), we obtain 

1 4 N -  2 + a 1 2  4 N -  1 = bl 9 a 2 1  4 N - 2  + a 2 2 4 N -  1 = b 2  
or 
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- - - 
u22 = - d N -  1@3(l) - e N -  1@3(2) - h,_ 1@’3(N - 3 )  + d N -  1. 

Finally, 6 is obtained from (31). 
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